{-# LANGUAGE FlexibleInstances, MultiParamTypeClasses, TupleSections #-}
module XMonad.Layout.ResizableThreeColumns (
ResizableThreeCol(..), MirrorResize(..)
) where
import XMonad hiding (splitVertically)
import XMonad.Prelude
import XMonad.Layout.ResizableTile(MirrorResize(..))
import qualified XMonad.StackSet as W
import qualified Data.Map as M
import Data.Ratio
data ResizableThreeCol a
= ResizableThreeColMid
{ forall a. ResizableThreeCol a -> Int
threeColNMaster :: !Int
, forall a. ResizableThreeCol a -> Rational
threeColDelta :: !Rational
, forall a. ResizableThreeCol a -> Rational
threeColFrac :: !Rational
, forall a. ResizableThreeCol a -> [Rational]
threeColSlaves :: [Rational]
}
| ResizableThreeCol
{ threeColNMaster :: !Int
, threeColDelta :: !Rational
, threeColFrac :: !Rational
, threeColSlaves :: [Rational]
} deriving (Int -> ResizableThreeCol a -> ShowS
forall a. Int -> ResizableThreeCol a -> ShowS
forall a. [ResizableThreeCol a] -> ShowS
forall a. ResizableThreeCol a -> String
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
showList :: [ResizableThreeCol a] -> ShowS
$cshowList :: forall a. [ResizableThreeCol a] -> ShowS
show :: ResizableThreeCol a -> String
$cshow :: forall a. ResizableThreeCol a -> String
showsPrec :: Int -> ResizableThreeCol a -> ShowS
$cshowsPrec :: forall a. Int -> ResizableThreeCol a -> ShowS
Show,ReadPrec [ResizableThreeCol a]
ReadPrec (ResizableThreeCol a)
ReadS [ResizableThreeCol a]
forall a. ReadPrec [ResizableThreeCol a]
forall a. ReadPrec (ResizableThreeCol a)
forall a. Int -> ReadS (ResizableThreeCol a)
forall a. ReadS [ResizableThreeCol a]
forall a.
(Int -> ReadS a)
-> ReadS [a] -> ReadPrec a -> ReadPrec [a] -> Read a
readListPrec :: ReadPrec [ResizableThreeCol a]
$creadListPrec :: forall a. ReadPrec [ResizableThreeCol a]
readPrec :: ReadPrec (ResizableThreeCol a)
$creadPrec :: forall a. ReadPrec (ResizableThreeCol a)
readList :: ReadS [ResizableThreeCol a]
$creadList :: forall a. ReadS [ResizableThreeCol a]
readsPrec :: Int -> ReadS (ResizableThreeCol a)
$creadsPrec :: forall a. Int -> ReadS (ResizableThreeCol a)
Read)
instance LayoutClass ResizableThreeCol a where
doLayout :: ResizableThreeCol a
-> Rectangle
-> Stack a
-> X ([(a, Rectangle)], Maybe (ResizableThreeCol a))
doLayout (ResizableThreeCol Int
n Rational
_ Rational
f [Rational]
mf) Rectangle
r = forall a (layout :: * -> *).
Bool
-> Int
-> Rational
-> [Rational]
-> Rectangle
-> Stack a
-> X ([(a, Rectangle)], Maybe (layout a))
doL Bool
False Int
n Rational
f [Rational]
mf Rectangle
r
doLayout (ResizableThreeColMid Int
n Rational
_ Rational
f [Rational]
mf) Rectangle
r = forall a (layout :: * -> *).
Bool
-> Int
-> Rational
-> [Rational]
-> Rectangle
-> Stack a
-> X ([(a, Rectangle)], Maybe (layout a))
doL Bool
True Int
n Rational
f [Rational]
mf Rectangle
r
handleMessage :: ResizableThreeCol a
-> SomeMessage -> X (Maybe (ResizableThreeCol a))
handleMessage ResizableThreeCol a
l SomeMessage
m = do
Maybe (Stack Window)
ms <- forall i l a. Workspace i l a -> Maybe (Stack a)
W.stack forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall i l a sid sd. Screen i l a sid sd -> Workspace i l a
W.workspace forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall i l a sid sd. StackSet i l a sid sd -> Screen i l a sid sd
W.current forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall s (m :: * -> *) a. MonadState s m => (s -> a) -> m a
gets XState
-> StackSet String (Layout Window) Window ScreenId ScreenDetail
windowset
[Window]
fs <- forall k a. Map k a -> [k]
M.keys forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall i l a sid sd. StackSet i l a sid sd -> Map a RationalRect
W.floating forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall s (m :: * -> *) a. MonadState s m => (s -> a) -> m a
gets XState
-> StackSet String (Layout Window) Window ScreenId ScreenDetail
windowset
forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ do
Stack Window
s <- Maybe (Stack Window)
ms
forall (f :: * -> *). Alternative f => Bool -> f ()
guard (forall a. Stack a -> a
W.focus Stack Window
s forall (t :: * -> *) a. (Foldable t, Eq a) => a -> t a -> Bool
`notElem` [Window]
fs)
let s' :: Stack Window
s' = Stack Window
s { up :: [Window]
W.up = forall a. Stack a -> [a]
W.up Stack Window
s forall a. Eq a => [a] -> [a] -> [a]
\\ [Window]
fs, down :: [Window]
W.down = forall a. Stack a -> [a]
W.down Stack Window
s forall a. Eq a => [a] -> [a] -> [a]
\\ [Window]
fs }
forall (t :: * -> *) (m :: * -> *) a.
(Foldable t, MonadPlus m) =>
t (m a) -> m a
msum [ forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall {a}. Resize -> ResizableThreeCol a
resize (forall m. Message m => SomeMessage -> Maybe m
fromMessage SomeMessage
m)
, forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (forall {a} {a}. Stack a -> MirrorResize -> ResizableThreeCol a
mresize Stack Window
s') (forall m. Message m => SomeMessage -> Maybe m
fromMessage SomeMessage
m)
, forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall {a}. IncMasterN -> ResizableThreeCol a
incmastern (forall m. Message m => SomeMessage -> Maybe m
fromMessage SomeMessage
m)
]
where
resize :: Resize -> ResizableThreeCol a
resize Resize
Shrink = ResizableThreeCol a
l { threeColFrac :: Rational
threeColFrac = forall a. Ord a => a -> a -> a
max (-Rational
0.5) forall a b. (a -> b) -> a -> b
$ Rational
fracforall a. Num a => a -> a -> a
-Rational
delta }
resize Resize
Expand = ResizableThreeCol a
l { threeColFrac :: Rational
threeColFrac = forall a. Ord a => a -> a -> a
min Rational
1 forall a b. (a -> b) -> a -> b
$ Rational
fracforall a. Num a => a -> a -> a
+Rational
delta }
mresize :: Stack a -> MirrorResize -> ResizableThreeCol a
mresize Stack a
s MirrorResize
MirrorShrink = forall {a} {a}. Stack a -> Rational -> ResizableThreeCol a
mresize' Stack a
s Rational
delta
mresize Stack a
s MirrorResize
MirrorExpand = forall {a} {a}. Stack a -> Rational -> ResizableThreeCol a
mresize' Stack a
s (forall a. Num a => a -> a
negate Rational
delta)
mresize' :: Stack a -> Rational -> ResizableThreeCol a
mresize' Stack a
s Rational
delt =
let up :: Int
up = forall (t :: * -> *) a. Foldable t => t a -> Int
length forall a b. (a -> b) -> a -> b
$ forall a. Stack a -> [a]
W.up Stack a
s
down :: Int
down = forall (t :: * -> *) a. Foldable t => t a -> Int
length forall a b. (a -> b) -> a -> b
$ forall a. Stack a -> [a]
W.down Stack a
s
total :: Int
total = Int
up forall a. Num a => a -> a -> a
+ Int
down forall a. Num a => a -> a -> a
+ Int
1
pos :: Int
pos = if Int
up forall a. Eq a => a -> a -> Bool
== Int
nmaster forall a. Num a => a -> a -> a
- Int
1
Bool -> Bool -> Bool
|| Int
up forall a. Eq a => a -> a -> Bool
== Int
total forall a. Num a => a -> a -> a
- Int
1
Bool -> Bool -> Bool
|| Int
up forall (t :: * -> *) a. (Foldable t, Eq a) => a -> t a -> Bool
`elem` [Int
down, Int
down forall a. Num a => a -> a -> a
+ Int
1]
then Int
up forall a. Num a => a -> a -> a
- Int
1
else Int
up
mfrac' :: [Rational]
mfrac' = forall {t} {t}. (Eq t, Num t, Num t) => [t] -> t -> t -> [t]
modifymfrac ([Rational]
mfrac forall a. [a] -> [a] -> [a]
++ forall a. a -> [a]
repeat Rational
1) Rational
delt Int
pos
in ResizableThreeCol a
l { threeColSlaves :: [Rational]
threeColSlaves = forall a. Int -> [a] -> [a]
take Int
total [Rational]
mfrac'}
modifymfrac :: [t] -> t -> t -> [t]
modifymfrac [] t
_ t
_ = []
modifymfrac (t
f:[t]
fx) t
d t
n
| t
n forall a. Eq a => a -> a -> Bool
== t
0 = t
fforall a. Num a => a -> a -> a
+t
d forall a. a -> [a] -> [a]
: [t]
fx
| Bool
otherwise = t
f forall a. a -> [a] -> [a]
: [t] -> t -> t -> [t]
modifymfrac [t]
fx t
d (t
nforall a. Num a => a -> a -> a
-t
1)
incmastern :: IncMasterN -> ResizableThreeCol a
incmastern (IncMasterN Int
x) = ResizableThreeCol a
l { threeColNMaster :: Int
threeColNMaster = forall a. Ord a => a -> a -> a
max Int
0 (Int
nmasterforall a. Num a => a -> a -> a
+Int
x) }
nmaster :: Int
nmaster = forall a. ResizableThreeCol a -> Int
threeColNMaster ResizableThreeCol a
l
delta :: Rational
delta = forall a. ResizableThreeCol a -> Rational
threeColDelta ResizableThreeCol a
l
frac :: Rational
frac = forall a. ResizableThreeCol a -> Rational
threeColFrac ResizableThreeCol a
l
mfrac :: [Rational]
mfrac = forall a. ResizableThreeCol a -> [Rational]
threeColSlaves ResizableThreeCol a
l
description :: ResizableThreeCol a -> String
description ResizableThreeCol a
_ = String
"ResizableThreeCol"
doL :: Bool -> Int -> Rational -> [Rational] -> Rectangle
-> W.Stack a -> X ([(a, Rectangle)], Maybe (layout a))
doL :: forall a (layout :: * -> *).
Bool
-> Int
-> Rational
-> [Rational]
-> Rectangle
-> Stack a
-> X ([(a, Rectangle)], Maybe (layout a))
doL Bool
middle Int
nmaster Rational
f [Rational]
mf Rectangle
r =
forall (m :: * -> *) a. Monad m => a -> m a
return
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (, forall a. Maybe a
Nothing)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (m :: * -> *) a b. Monad m => m (a -> b) -> m a -> m b
ap forall a b. [a] -> [b] -> [(a, b)]
zip (Bool
-> Rational -> [Rational] -> Rectangle -> Int -> Int -> [Rectangle]
tile3 Bool
middle Rational
f ([Rational]
mf forall a. [a] -> [a] -> [a]
++ forall a. a -> [a]
repeat Rational
1) Rectangle
r Int
nmaster forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (t :: * -> *) a. Foldable t => t a -> Int
length) forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Stack a -> [a]
W.integrate
tile3 :: Bool -> Rational -> [Rational] -> Rectangle -> Int -> Int -> [Rectangle]
tile3 :: Bool
-> Rational -> [Rational] -> Rectangle -> Int -> Int -> [Rectangle]
tile3 Bool
middle Rational
f [Rational]
mf Rectangle
r Int
nmaster Int
n
| Int
n forall a. Ord a => a -> a -> Bool
<= Int
nmaster Bool -> Bool -> Bool
|| Int
nmaster forall a. Eq a => a -> a -> Bool
== Int
0 = forall r. RealFrac r => [r] -> Int -> Rectangle -> [Rectangle]
splitVertically [Rational]
mf Int
n Rectangle
r
| Int
n forall a. Ord a => a -> a -> Bool
<= Int
nmasterforall a. Num a => a -> a -> a
+Int
1 = forall r. RealFrac r => [r] -> Int -> Rectangle -> [Rectangle]
splitVertically [Rational]
mf Int
nmaster Rectangle
s1
forall a. [a] -> [a] -> [a]
++ forall r. RealFrac r => [r] -> Int -> Rectangle -> [Rectangle]
splitVertically (forall a. Int -> [a] -> [a]
drop Int
nmaster [Rational]
mf) (Int
nforall a. Num a => a -> a -> a
-Int
nmaster) Rectangle
s2
| Bool
otherwise = forall (t :: * -> *) a. Foldable t => t [a] -> [a]
concat [ forall r. RealFrac r => [r] -> Int -> Rectangle -> [Rectangle]
splitVertically [Rational]
mf Int
nmaster Rectangle
r1
, forall r. RealFrac r => [r] -> Int -> Rectangle -> [Rectangle]
splitVertically (forall a. Int -> [a] -> [a]
drop Int
nmaster [Rational]
mf) Int
nstack1 Rectangle
r2
, forall r. RealFrac r => [r] -> Int -> Rectangle -> [Rectangle]
splitVertically (forall a. Int -> [a] -> [a]
drop (Int
nmaster forall a. Num a => a -> a -> a
+ Int
nstack1) [Rational]
mf) Int
nstack2 Rectangle
r3
]
where
(Rectangle
r1, Rectangle
r2, Rectangle
r3) = Bool -> Rational -> Rectangle -> (Rectangle, Rectangle, Rectangle)
split3HorizontallyBy Bool
middle (if Rational
fforall a. Ord a => a -> a -> Bool
<Rational
0 then Rational
1forall a. Num a => a -> a -> a
+Rational
2forall a. Num a => a -> a -> a
*Rational
f else Rational
f) Rectangle
r
(Rectangle
s1, Rectangle
s2) = forall r. RealFrac r => r -> Rectangle -> (Rectangle, Rectangle)
splitHorizontallyBy (if Rational
fforall a. Ord a => a -> a -> Bool
<Rational
0 then Rational
1forall a. Num a => a -> a -> a
+Rational
f else Rational
f) Rectangle
r
nstack :: Int
nstack = Int
n forall a. Num a => a -> a -> a
- Int
nmaster
nstack1 :: Int
nstack1 = forall a b. (RealFrac a, Integral b) => a -> b
ceiling (Int
nstack forall a. Integral a => a -> a -> Ratio a
% Int
2)
nstack2 :: Int
nstack2 = Int
nstack forall a. Num a => a -> a -> a
- Int
nstack1
splitVertically :: RealFrac r => [r] -> Int -> Rectangle -> [Rectangle]
splitVertically :: forall r. RealFrac r => [r] -> Int -> Rectangle -> [Rectangle]
splitVertically [] Int
_ Rectangle
r = [Rectangle
r]
splitVertically [r]
_ Int
n Rectangle
r | Int
n forall a. Ord a => a -> a -> Bool
< Int
2 = [Rectangle
r]
splitVertically (r
f:[r]
fx) Int
n (Rectangle Position
sx Position
sy Dimension
sw Dimension
sh) =
let smallh :: Dimension
smallh = forall a. Ord a => a -> a -> a
min Dimension
sh (forall a b. (RealFrac a, Integral b) => a -> b
floor forall a b. (a -> b) -> a -> b
$ forall a b. (Integral a, Num b) => a -> b
fi (Dimension
sh forall a. Integral a => a -> a -> a
`div` forall a b. (Integral a, Num b) => a -> b
fi Int
n) forall a. Num a => a -> a -> a
* r
f)
in Position -> Position -> Dimension -> Dimension -> Rectangle
Rectangle Position
sx Position
sy Dimension
sw Dimension
smallh forall a. a -> [a] -> [a]
:
forall r. RealFrac r => [r] -> Int -> Rectangle -> [Rectangle]
splitVertically [r]
fx (Int
nforall a. Num a => a -> a -> a
-Int
1) (Position -> Position -> Dimension -> Dimension -> Rectangle
Rectangle Position
sx (Position
syforall a. Num a => a -> a -> a
+forall a b. (Integral a, Num b) => a -> b
fi Dimension
smallh) Dimension
sw (Dimension
shforall a. Num a => a -> a -> a
-Dimension
smallh))
split3HorizontallyBy :: Bool -> Rational -> Rectangle -> (Rectangle, Rectangle, Rectangle)
split3HorizontallyBy :: Bool -> Rational -> Rectangle -> (Rectangle, Rectangle, Rectangle)
split3HorizontallyBy Bool
middle Rational
f (Rectangle Position
sx Position
sy Dimension
sw Dimension
sh) =
if Bool
middle
then ( Position -> Position -> Dimension -> Dimension -> Rectangle
Rectangle (Position
sx forall a. Num a => a -> a -> a
+ forall a b. (Integral a, Num b) => a -> b
fromIntegral Dimension
r3w) Position
sy Dimension
r1w Dimension
sh
, Position -> Position -> Dimension -> Dimension -> Rectangle
Rectangle (Position
sx forall a. Num a => a -> a -> a
+ forall a b. (Integral a, Num b) => a -> b
fromIntegral Dimension
r3w forall a. Num a => a -> a -> a
+ forall a b. (Integral a, Num b) => a -> b
fromIntegral Dimension
r1w) Position
sy Dimension
r2w Dimension
sh
, Position -> Position -> Dimension -> Dimension -> Rectangle
Rectangle Position
sx Position
sy Dimension
r3w Dimension
sh )
else ( Position -> Position -> Dimension -> Dimension -> Rectangle
Rectangle Position
sx Position
sy Dimension
r1w Dimension
sh
, Position -> Position -> Dimension -> Dimension -> Rectangle
Rectangle (Position
sx forall a. Num a => a -> a -> a
+ forall a b. (Integral a, Num b) => a -> b
fromIntegral Dimension
r1w) Position
sy Dimension
r2w Dimension
sh
, Position -> Position -> Dimension -> Dimension -> Rectangle
Rectangle (Position
sx forall a. Num a => a -> a -> a
+ forall a b. (Integral a, Num b) => a -> b
fromIntegral Dimension
r1w forall a. Num a => a -> a -> a
+ forall a b. (Integral a, Num b) => a -> b
fromIntegral Dimension
r2w) Position
sy Dimension
r3w Dimension
sh )
where
r1w :: Dimension
r1w = forall a b. (RealFrac a, Integral b) => a -> b
ceiling forall a b. (a -> b) -> a -> b
$ forall a b. (Integral a, Num b) => a -> b
fromIntegral Dimension
sw forall a. Num a => a -> a -> a
* Rational
f
r2w :: Dimension
r2w = forall a b. (RealFrac a, Integral b) => a -> b
ceiling forall a b. (a -> b) -> a -> b
$ (Dimension
sw forall a. Num a => a -> a -> a
- Dimension
r1w) forall a. Integral a => a -> a -> Ratio a
% Dimension
2
r3w :: Dimension
r3w = Dimension
sw forall a. Num a => a -> a -> a
- Dimension
r1w forall a. Num a => a -> a -> a
- Dimension
r2w