{-# LANGUAGE FlexibleInstances, MultiParamTypeClasses, FlexibleContexts, PatternGuards #-}
module XMonad.Layout.Master (
mastered,
fixMastered,
multimastered,
AddMaster,
) where
import XMonad
import qualified XMonad.StackSet as S
import XMonad.Layout.LayoutModifier
import Control.Arrow (first)
data AddMaster a = AddMaster Int Rational Rational deriving (Int -> AddMaster a -> ShowS
forall a. Int -> AddMaster a -> ShowS
forall a. [AddMaster a] -> ShowS
forall a. AddMaster a -> String
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
showList :: [AddMaster a] -> ShowS
$cshowList :: forall a. [AddMaster a] -> ShowS
show :: AddMaster a -> String
$cshow :: forall a. AddMaster a -> String
showsPrec :: Int -> AddMaster a -> ShowS
$cshowsPrec :: forall a. Int -> AddMaster a -> ShowS
Show, ReadPrec [AddMaster a]
ReadPrec (AddMaster a)
ReadS [AddMaster a]
forall a. ReadPrec [AddMaster a]
forall a. ReadPrec (AddMaster a)
forall a. Int -> ReadS (AddMaster a)
forall a. ReadS [AddMaster a]
forall a.
(Int -> ReadS a)
-> ReadS [a] -> ReadPrec a -> ReadPrec [a] -> Read a
readListPrec :: ReadPrec [AddMaster a]
$creadListPrec :: forall a. ReadPrec [AddMaster a]
readPrec :: ReadPrec (AddMaster a)
$creadPrec :: forall a. ReadPrec (AddMaster a)
readList :: ReadS [AddMaster a]
$creadList :: forall a. ReadS [AddMaster a]
readsPrec :: Int -> ReadS (AddMaster a)
$creadsPrec :: forall a. Int -> ReadS (AddMaster a)
Read)
multimastered :: (LayoutClass l a) =>
Int
-> Rational
-> Rational
-> l a
-> ModifiedLayout AddMaster l a
multimastered :: forall (l :: * -> *) a.
LayoutClass l a =>
Int -> Rational -> Rational -> l a -> ModifiedLayout AddMaster l a
multimastered Int
k Rational
delta Rational
frac = forall (m :: * -> *) (l :: * -> *) a.
m a -> l a -> ModifiedLayout m l a
ModifiedLayout forall a b. (a -> b) -> a -> b
$ forall a. Int -> Rational -> Rational -> AddMaster a
AddMaster Int
k Rational
delta Rational
frac
mastered :: (LayoutClass l a) =>
Rational
-> Rational
-> l a
-> ModifiedLayout AddMaster l a
mastered :: forall (l :: * -> *) a.
LayoutClass l a =>
Rational -> Rational -> l a -> ModifiedLayout AddMaster l a
mastered = forall (l :: * -> *) a.
LayoutClass l a =>
Int -> Rational -> Rational -> l a -> ModifiedLayout AddMaster l a
multimastered Int
1
instance LayoutModifier AddMaster Window where
modifyLayout :: forall (l :: * -> *).
LayoutClass l Window =>
AddMaster Window
-> Workspace String (l Window) Window
-> Rectangle
-> X ([(Window, Rectangle)], Maybe (l Window))
modifyLayout (AddMaster Int
k Rational
delta Rational
frac) = forall (l :: * -> *).
LayoutClass l Window =>
Bool
-> Int
-> Rational
-> Rational
-> Workspace String (l Window) Window
-> Rectangle
-> X ([(Window, Rectangle)], Maybe (l Window))
applyMaster Bool
False Int
k Rational
delta Rational
frac
modifierDescription :: AddMaster Window -> String
modifierDescription AddMaster Window
_ = String
"Mastered"
pureMess :: AddMaster Window -> SomeMessage -> Maybe (AddMaster Window)
pureMess (AddMaster Int
k Rational
delta Rational
frac) SomeMessage
m
| Just Resize
Shrink <- forall m. Message m => SomeMessage -> Maybe m
fromMessage SomeMessage
m = forall a. a -> Maybe a
Just forall a b. (a -> b) -> a -> b
$ forall a. Int -> Rational -> Rational -> AddMaster a
AddMaster Int
k Rational
delta (Rational
fracforall a. Num a => a -> a -> a
-Rational
delta)
| Just Resize
Expand <- forall m. Message m => SomeMessage -> Maybe m
fromMessage SomeMessage
m = forall a. a -> Maybe a
Just forall a b. (a -> b) -> a -> b
$ forall a. Int -> Rational -> Rational -> AddMaster a
AddMaster Int
k Rational
delta (Rational
fracforall a. Num a => a -> a -> a
+Rational
delta)
| Just (IncMasterN Int
d) <- forall m. Message m => SomeMessage -> Maybe m
fromMessage SomeMessage
m = forall a. a -> Maybe a
Just forall a b. (a -> b) -> a -> b
$ forall a. Int -> Rational -> Rational -> AddMaster a
AddMaster (forall a. Ord a => a -> a -> a
max Int
1 (Int
kforall a. Num a => a -> a -> a
+Int
d)) Rational
delta Rational
frac
pureMess AddMaster Window
_ SomeMessage
_ = forall a. Maybe a
Nothing
newtype FixMaster a = FixMaster (AddMaster a) deriving (Int -> FixMaster a -> ShowS
forall a. Int -> FixMaster a -> ShowS
forall a. [FixMaster a] -> ShowS
forall a. FixMaster a -> String
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
showList :: [FixMaster a] -> ShowS
$cshowList :: forall a. [FixMaster a] -> ShowS
show :: FixMaster a -> String
$cshow :: forall a. FixMaster a -> String
showsPrec :: Int -> FixMaster a -> ShowS
$cshowsPrec :: forall a. Int -> FixMaster a -> ShowS
Show, ReadPrec [FixMaster a]
ReadPrec (FixMaster a)
ReadS [FixMaster a]
forall a. ReadPrec [FixMaster a]
forall a. ReadPrec (FixMaster a)
forall a. Int -> ReadS (FixMaster a)
forall a. ReadS [FixMaster a]
forall a.
(Int -> ReadS a)
-> ReadS [a] -> ReadPrec a -> ReadPrec [a] -> Read a
readListPrec :: ReadPrec [FixMaster a]
$creadListPrec :: forall a. ReadPrec [FixMaster a]
readPrec :: ReadPrec (FixMaster a)
$creadPrec :: forall a. ReadPrec (FixMaster a)
readList :: ReadS [FixMaster a]
$creadList :: forall a. ReadS [FixMaster a]
readsPrec :: Int -> ReadS (FixMaster a)
$creadsPrec :: forall a. Int -> ReadS (FixMaster a)
Read)
instance LayoutModifier FixMaster Window where
modifyLayout :: forall (l :: * -> *).
LayoutClass l Window =>
FixMaster Window
-> Workspace String (l Window) Window
-> Rectangle
-> X ([(Window, Rectangle)], Maybe (l Window))
modifyLayout (FixMaster (AddMaster Int
k Rational
d Rational
f)) = forall (l :: * -> *).
LayoutClass l Window =>
Bool
-> Int
-> Rational
-> Rational
-> Workspace String (l Window) Window
-> Rectangle
-> X ([(Window, Rectangle)], Maybe (l Window))
applyMaster Bool
True Int
k Rational
d Rational
f
modifierDescription :: FixMaster Window -> String
modifierDescription (FixMaster AddMaster Window
a) = String
"Fix" forall a. [a] -> [a] -> [a]
++ forall (m :: * -> *) a. LayoutModifier m a => m a -> String
modifierDescription AddMaster Window
a
pureMess :: FixMaster Window -> SomeMessage -> Maybe (FixMaster Window)
pureMess (FixMaster AddMaster Window
a) SomeMessage
m = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a. AddMaster a -> FixMaster a
FixMaster (forall (m :: * -> *) a.
LayoutModifier m a =>
m a -> SomeMessage -> Maybe (m a)
pureMess AddMaster Window
a SomeMessage
m)
fixMastered :: (LayoutClass l a) =>
Rational
-> Rational
-> l a
-> ModifiedLayout FixMaster l a
fixMastered :: forall (l :: * -> *) a.
LayoutClass l a =>
Rational -> Rational -> l a -> ModifiedLayout FixMaster l a
fixMastered Rational
delta Rational
frac = forall (m :: * -> *) (l :: * -> *) a.
m a -> l a -> ModifiedLayout m l a
ModifiedLayout forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. AddMaster a -> FixMaster a
FixMaster forall a b. (a -> b) -> a -> b
$ forall a. Int -> Rational -> Rational -> AddMaster a
AddMaster Int
1 Rational
delta Rational
frac
applyMaster :: (LayoutClass l Window) =>
Bool
-> Int
-> Rational
-> Rational
-> S.Workspace WorkspaceId (l Window) Window
-> Rectangle
-> X ([(Window, Rectangle)], Maybe (l Window))
applyMaster :: forall (l :: * -> *).
LayoutClass l Window =>
Bool
-> Int
-> Rational
-> Rational
-> Workspace String (l Window) Window
-> Rectangle
-> X ([(Window, Rectangle)], Maybe (l Window))
applyMaster Bool
f Int
k Rational
_ Rational
frac Workspace String (l Window) Window
wksp Rectangle
rect = do
let st :: Maybe (Stack Window)
st= forall i l a. Workspace i l a -> Maybe (Stack a)
S.stack Workspace String (l Window) Window
wksp
let ws :: [Window]
ws = forall a. Maybe (Stack a) -> [a]
S.integrate' Maybe (Stack Window)
st
let n :: Int
n = forall (t :: * -> *) a. Foldable t => t a -> Int
length [Window]
ws forall a. Num a => a -> a -> a
+ forall a. Enum a => a -> Int
fromEnum Bool
f
if Int
n forall a. Ord a => a -> a -> Bool
> Int
1 then
if Int
nforall a. Ord a => a -> a -> Bool
<=Int
k then
forall (m :: * -> *) a. Monad m => a -> m a
return (forall a. Rectangle -> [a] -> [(a, Rectangle)]
divideCol Rectangle
rect [Window]
ws, forall a. Maybe a
Nothing)
else do
let m :: [Window]
m = forall a. Int -> [a] -> [a]
take Int
k [Window]
ws
let (Rectangle
mr, Rectangle
sr) = forall r. RealFrac r => r -> Rectangle -> (Rectangle, Rectangle)
splitHorizontallyBy Rational
frac Rectangle
rect
let nst :: Maybe (Stack Window)
nst = Maybe (Stack Window)
stforall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= forall a. (a -> Bool) -> Stack a -> Maybe (Stack a)
S.filter (forall (t :: * -> *) a. (Foldable t, Eq a) => a -> t a -> Bool
`notElem` [Window]
m)
([(Window, Rectangle)], Maybe (l Window))
wrs <- forall (layout :: * -> *) a.
LayoutClass layout a =>
Workspace String (layout a) a
-> Rectangle -> X ([(a, Rectangle)], Maybe (layout a))
runLayout (Workspace String (l Window) Window
wksp {stack :: Maybe (Stack Window)
S.stack = Maybe (Stack Window)
nst}) Rectangle
sr
forall (m :: * -> *) a. Monad m => a -> m a
return (forall (a :: * -> * -> *) b c d.
Arrow a =>
a b c -> a (b, d) (c, d)
first (forall a. Rectangle -> [a] -> [(a, Rectangle)]
divideCol Rectangle
mr [Window]
m forall a. [a] -> [a] -> [a]
++) ([(Window, Rectangle)], Maybe (l Window))
wrs)
else forall (layout :: * -> *) a.
LayoutClass layout a =>
Workspace String (layout a) a
-> Rectangle -> X ([(a, Rectangle)], Maybe (layout a))
runLayout Workspace String (l Window) Window
wksp Rectangle
rect
shiftD :: Position -> Rectangle -> Rectangle
shiftD :: Position -> Rectangle -> Rectangle
shiftD Position
s (Rectangle Position
x Position
y Dimension
w Dimension
h) = Position -> Position -> Dimension -> Dimension -> Rectangle
Rectangle Position
x (Position
yforall a. Num a => a -> a -> a
+Position
s) Dimension
w Dimension
h
divideCol :: Rectangle -> [a] -> [(a, Rectangle)]
divideCol :: forall a. Rectangle -> [a] -> [(a, Rectangle)]
divideCol (Rectangle Position
x Position
y Dimension
w Dimension
h) [a]
ws = forall a b. [a] -> [b] -> [(a, b)]
zip [a]
ws [Rectangle]
rects
where n :: Int
n = forall (t :: * -> *) a. Foldable t => t a -> Int
length [a]
ws
oneH :: Int
oneH = forall a b. (Integral a, Num b) => a -> b
fromIntegral Dimension
h forall a. Integral a => a -> a -> a
`div` Int
n
oneRect :: Rectangle
oneRect = Position -> Position -> Dimension -> Dimension -> Rectangle
Rectangle Position
x Position
y Dimension
w (forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
oneH)
rects :: [Rectangle]
rects = forall a. Int -> [a] -> [a]
take Int
n forall a b. (a -> b) -> a -> b
$ forall a. (a -> a) -> a -> [a]
iterate (Position -> Rectangle -> Rectangle
shiftD (forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
oneH)) Rectangle
oneRect