module XMonad.Actions.FlexibleResize (
XMonad.Actions.FlexibleResize.mouseResizeWindow,
XMonad.Actions.FlexibleResize.mouseResizeEdgeWindow
) where
import XMonad
import XMonad.Prelude (fi)
import Foreign.C.Types
mouseResizeWindow
:: Window
-> X ()
mouseResizeWindow :: Window -> X ()
mouseResizeWindow = Rational -> Window -> X ()
mouseResizeEdgeWindow Rational
0
mouseResizeEdgeWindow
:: Rational
-> Window
-> X ()
mouseResizeEdgeWindow :: Rational -> Window -> X ()
mouseResizeEdgeWindow Rational
edge Window
w = X Bool -> X () -> X ()
whenX (Window -> X Bool
isClient Window
w) forall a b. (a -> b) -> a -> b
$ forall a. (Display -> X a) -> X a
withDisplay forall a b. (a -> b) -> a -> b
$ \Display
d ->
Display -> Window -> (WindowAttributes -> X ()) -> X ()
withWindowAttributes Display
d Window
w forall a b. (a -> b) -> a -> b
$ \WindowAttributes
wa -> do
SizeHints
sh <- forall (m :: * -> *) a. MonadIO m => IO a -> m a
io forall a b. (a -> b) -> a -> b
$ Display -> Window -> IO SizeHints
getWMNormalHints Display
d Window
w
(Bool
_, Window
_, Window
_, CInt
_, CInt
_, CInt
ix, CInt
iy, Modifier
_) <- forall (m :: * -> *) a. MonadIO m => IO a -> m a
io forall a b. (a -> b) -> a -> b
$ Display
-> Window
-> IO (Bool, Window, Window, CInt, CInt, CInt, CInt, Modifier)
queryPointer Display
d Window
w
let
pos_x :: Position
pos_x = forall a b. (Integral a, Num b) => a -> b
fi forall a b. (a -> b) -> a -> b
$ WindowAttributes -> CInt
wa_x WindowAttributes
wa
pos_y :: Position
pos_y = forall a b. (Integral a, Num b) => a -> b
fi forall a b. (a -> b) -> a -> b
$ WindowAttributes -> CInt
wa_y WindowAttributes
wa
width :: Position
width = forall a b. (Integral a, Num b) => a -> b
fi forall a b. (a -> b) -> a -> b
$ WindowAttributes -> CInt
wa_width WindowAttributes
wa
height :: Position
height = forall a b. (Integral a, Num b) => a -> b
fi forall a b. (a -> b) -> a -> b
$ WindowAttributes -> CInt
wa_height WindowAttributes
wa
west :: Maybe Bool
west = CInt -> Position -> Maybe Bool
findPos CInt
ix Position
width
north :: Maybe Bool
north = CInt -> Position -> Maybe Bool
findPos CInt
iy Position
height
(Position
cx, Dimension -> Position
fx, Position -> Dimension
gx) = Maybe Bool
-> Position
-> Position
-> (Position, Dimension -> Position, Position -> Dimension)
mkSel Maybe Bool
west Position
width Position
pos_x
(Position
cy, Dimension -> Position
fy, Position -> Dimension
gy) = Maybe Bool
-> Position
-> Position
-> (Position, Dimension -> Position, Position -> Dimension)
mkSel Maybe Bool
north Position
height Position
pos_y
forall (m :: * -> *) a. MonadIO m => IO a -> m a
io forall a b. (a -> b) -> a -> b
$ Display
-> Window
-> Window
-> Position
-> Position
-> Dimension
-> Dimension
-> Position
-> Position
-> IO ()
warpPointer Display
d Window
none Window
w Position
0 Position
0 Dimension
0 Dimension
0 Position
cx Position
cy
(Position -> Position -> X ()) -> X () -> X ()
mouseDrag (\Position
ex Position
ey -> do let (Dimension
nw,Dimension
nh) = forall a.
Integral a =>
SizeHints -> (a, a) -> (Dimension, Dimension)
applySizeHintsContents SizeHints
sh (Position -> Dimension
gx Position
ex, Position -> Dimension
gy Position
ey)
forall (m :: * -> *) a. MonadIO m => IO a -> m a
io forall a b. (a -> b) -> a -> b
$ Display
-> Window
-> Position
-> Position
-> Dimension
-> Dimension
-> IO ()
moveResizeWindow Display
d Window
w (Dimension -> Position
fx Dimension
nw) (Dimension -> Position
fy Dimension
nh) Dimension
nw Dimension
nh
Window -> X ()
float Window
w)
(Window -> X ()
float Window
w)
where
findPos :: CInt -> Position -> Maybe Bool
findPos :: CInt -> Position -> Maybe Bool
findPos CInt
m Position
s
| Rational
p forall a. Ord a => a -> a -> Bool
< Rational
0.5 forall a. Num a => a -> a -> a
- Rational
edgeforall a. Fractional a => a -> a -> a
/Rational
2 = forall a. a -> Maybe a
Just Bool
True
| Rational
p forall a. Ord a => a -> a -> Bool
< Rational
0.5 forall a. Num a => a -> a -> a
+ Rational
edgeforall a. Fractional a => a -> a -> a
/Rational
2 = forall a. Maybe a
Nothing
| Bool
otherwise = forall a. a -> Maybe a
Just Bool
False
where
p :: Rational
p = forall a b. (Integral a, Num b) => a -> b
fi CInt
m forall a. Fractional a => a -> a -> a
/ forall a b. (Integral a, Num b) => a -> b
fi Position
s
mkSel :: Maybe Bool -> Position -> Position -> (Position, Dimension -> Position, Position -> Dimension)
mkSel :: Maybe Bool
-> Position
-> Position
-> (Position, Dimension -> Position, Position -> Dimension)
mkSel Maybe Bool
b Position
k Position
p = case Maybe Bool
b of
Just Bool
True -> (Position
0, (forall a b. (Integral a, Num b) => a -> b
fi Position
k forall a. Num a => a -> a -> a
+ forall a b. (Integral a, Num b) => a -> b
fi Position
p forall a. Num a => a -> a -> a
-)forall b c a. (b -> c) -> (a -> b) -> a -> c
.forall a b. (Integral a, Num b) => a -> b
fi, (forall a b. (Integral a, Num b) => a -> b
fi Position
k forall a. Num a => a -> a -> a
+ forall a b. (Integral a, Num b) => a -> b
fi Position
p forall a. Num a => a -> a -> a
-)forall b c a. (b -> c) -> (a -> b) -> a -> c
.forall a b. (Integral a, Num b) => a -> b
fi)
Maybe Bool
Nothing -> (Position
k forall a. Integral a => a -> a -> a
`div` Position
2, forall a b. a -> b -> a
const Position
p, forall a b. a -> b -> a
const forall a b. (a -> b) -> a -> b
$ forall a b. (Integral a, Num b) => a -> b
fi Position
k)
Just Bool
False -> (Position
k, forall a b. a -> b -> a
const Position
p, forall a. Num a => a -> a -> a
subtract (forall a b. (Integral a, Num b) => a -> b
fi Position
p) forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b. (Integral a, Num b) => a -> b
fi)